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Stochastic Stability and Performance Estimates of Packetized
Unconstrained Model Predictive Control for Networked Control Systems

Marcus Reble, Daniel E. Quevedo, and Frank Allgöwer

Abstract— In this work, we consider the control of discrete-
time nonlinear systems over unreliable packet-based communi-
cation networks subject to random packet-dropouts. In order
to mitigate the influence of the packet dropouts, the controller
transmits packets containing control inputs for more than one
future time instant. A suitable buffering is then applied at the
plant actuator side. Since we do not assume the number of
consecutive packet dropouts to be bounded, we are interested
in stochastic stability of the closed-loop. For the calculation
of the control inputs, we propose an unconstrained model
predictive control (MPC) scheme without additional terminal
weighting term. This unconstrained MPC scheme shows two
significant advantages. First, we do not require the knowledge
of a global control Lyapunov function, but instead only a less
restrictive controllability assumption, in order to guarantee
stochastic stability. Second, guaranteed performance bounds
on the expected infinite horizon cost of the closed-loop can
be obtained.

I. INTRODUCTION

Due to recent developments in communication technolo-
gies, control loops are more and more frequently closed over
shared packet based communication networks. The analysis
and design of such systems, most commonly referred to
as networked controlled systems (NCS), has attracted sig-
nificant interest in research and practical applications, see
e.g. [1–3] and the references therein. The use of general
purpose networks has advantages, such as lower cost and
simplified cabling. However, several new challenges are
posed, in particular time-delays and packet dropouts are
introduced by the communication network.

The use of model predictive control (MPC) with suitable
buffering strategies have been proven to be effective tools
in order to compensate time-delays and packet dropouts in
NCS, see e.g. [4–9].

In contrast to most other networked MPC schemes, see
e.g. [6–8], in the present work we do not assume that the
number of consecutive packet dropouts is bounded. In con-
trast, we consider channels with independent and identically
distributed (i.i.d.) packet dropouts. For this reason, we use a
stochastic setting to investigate stability and performance of
the closed-loop.
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In contrast to the similar results in [9] our setup does not
require the use of a global control Lyapunov function as
terminal cost function. Instead, a less restrictive controlla-
bility assumption is used, which was similarly required in
addition to the global control Lyapunov function in [9] to
obtain bounds on the necessary prediction horizon and packet
size in order to guarantee (stochastic) stability. Furthermore,
removing the terminal cost function in our MPC scheme
allows the calculation of guaranteed performance bounds,
which are related to results on unconstrained MPC in the
deterministic setting [10–12].

The remainder of this work is organized as follows.
The problem setup is described in Section II. Section III
states the main assumptions used in this work and shows
some preliminary results. The main results are presented in
Section IV. In particular, conditions for stochastic stability
and performance estimates are given. Simulation results for a
numerical example are shown in Section V. The paper ends
with concluding remarks in Section VI.

Notation: R+ denotes the non-negative real numbers. Rn
is the n-dimensional Euclidean space with the standard norm
| · |. Let N denote the natural numbers and N0 = N ∪ {0}.
The conditional expected value of random variable X given
Y is denoted by E[X|Y ]. We write In for the n×n-identity
matrix.

II. PROBLEM SETUP

In this work, we consider nonlinear discrete-time systems

x(k + 1) = f(x(k), u(k)) (1a)
x(0) = x0 (1b)

with state x(k) ∈ Rn and control input u(k) ∈ U ⊆ Rm.

A. Networked Control Setup and Buffering

All data transmitted between controller and actuator is sent
in large time-stamped packets. However, the presence of a
packet-based network may introduce packet dropouts due to
transmission errors and congestion. The effect of the packet
dropouts is modeled by a discrete Bernoulli process d(k),
k ∈ N0,

d(k) =
{

1 packet dropout occurs at time k,
0 packet successfully transmitted at time k.

The random variables d(k) are i.i.d. Bernoulli variables with

Prob(d(k) = 1) = p , Prob(d(k) = 0) = 1− p ,

i.e. the probability of a packet dropout for each packet is
given by the constant dropout-rate 0 < p < 1.
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Fig. 1. Schematic of the Networked Control System.

To overcome the effects of the packet dropouts, more than
one future control move is calculated and sent to the plant.
At each time instant k, the packetized predictive controller
sends a packet

~u(k) =
[
uk|k, . . . , uk+NB−1|k

]T ∈ UNB ⊆ RmNB

to the plant, containing NB possible future control inputs.
If the packet arrives at the buffer, the control inputs stored
in ~u(k) are applied to the system sequentially until the next
valid control packet arrives. Formally, we can describe the
buffering mechanism as in [9] by using the buffer state
b(k) ∈ RmNB and

b(k) = d(k)Sb(k − 1) + (1− d(k))~u(k) , u(k) = eT1 b(k)

in which the initial buffer state b(0) = 0 and

S =


0 Im 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 Im 0
0 · · · · · · 0 Im
0 · · · · · · · · · 0

 ∈ RmNB×mNB ,

e1 =
[
Im 0 · · · · · · 0

]
∈ Rm×mNB .

In the following, we denote the successful transmission
times (no packet dropouts) by

K = {k0, k1, . . .} ⊆ N0 , ki+1 > ki .

Since the dropout process is Bernoulli, the time between two
consecutive successful transmissions is i.i.d. with geometric
distribution

Prob(ki+1 − ki = m) = (1− p) pm−1 , ∀m ∈ N . (2)

Without loss of generality, we assume the first successful
transmission to occur at k0 = 0.

Using this definition, the input applied to the system can
be formally written as

u(k) =
{
uk|ki , for k − ki < NB
0, for k − ki ≥ NB

(3)

in which ki ≤ k < ki+1 and ki, ki+1 ∈ K. For more details,
we refer to [9].

B. MPC Setup

The need for the calculation of more than one future con-
trol input renders model predictive control (MPC) a natural
choice for the control design methodology. The following

finite horizon cost function is minimized at each time instant
k for measured state x(k)

JNp(x(k), ū(·)) =
Np∑
i=0

F (x̄(i; k), ū(i)) (4a)

with predicted states x̄ given by the nominal model

x̄(i+ 1; k) = f(x̄(i; k), ū(i)) , (4b)
x̄(0; k) = x(k) . (4c)

Here, N 3 Np ≥ 2 denotes the prediction horizon. Further
assumptions on the stage cost F will be made in Assump-
tion 1 in Section III. In the following, we assume that the
prediction horizon is larger than or equal to the buffer size,
i.e. Np ≥ NB .

Note that we employ neither terminal weighting terms
nor terminal state constraints in our optimization problem
in contrast to the most common setups with guaranteed
stability [13]. Unconstrained MPC schemes are especially
attractive from a computational point of view and allow the
calculation of guaranteed performance bounds [10, 11], see
also Section IV-C.

We denote the optimal input sequence by

u∗Np(·;x(k)) = arg min
ū∈UNp+1

JNp(x(k), ū(·))

and the optimal value function by

J∗Np(x(k)) = JNp(x(x), u∗Np(·;x(k))) .

The input values ~u(k) = u∗Np(·;x(k)) are sent over the
network in one packet and applied until a newer packet
arrives. Hence, the input applied to the system is formally
defined by

u(k) =
{
u∗Np(k − ki;x(ki)), for k − ki < NB
0, for k − ki ≥ NB

(5)

in which ki ≤ k < ki+1 and ki, ki+1 ∈ K.

III. PRELIMINARIES AND ASSUMPTIONS

For the derivation of the stability results, we require the
following assumptions and intermediate results.

A. Unconstrained MPC
Assumption 1 (Lower Bound of the Stage Cost)
The stage cost F : Rn × Rm → R+ satisfies

F (x, u) ≥ F (x, 0) ≥ cF |x|2 ∀ x ∈ Rn , u ∈ Rm , (6)

in which R+ 3 cF > 0.

Assumption 2 (Controllability Assumption)
For every state x ∈ Rn and prediction horizon Np ∈ N

J∗Np(x) ≤ B(Np)F (x, 0) (7)

holds for some bounded non-decreasing function B : N →
[1,∞) ⊂ R+ with lim

Np→∞
B(Np) = B∞ <∞.

Assumption 2 is a standard assumption in unconstrained
MPC [10–12, 14]. Note that Condition (7) is less restrictive



than the assumption of the knowledge of a global control
Lyapunov function as required in [9]. Furthermore, assump-
tions about an upper bound on the optimal cost function
in terms of the stage cost similar to Assumption 2 are
additionally required in [9, Corollary 9].

The following lemma is a consequence of the controlla-
bility assumption and similar to previous results on uncon-
strained MPC in [10–12, 14].

Lemma 1 (Unconstrained MPC)
Suppose that Assumptions 1 and 2 hold and that a control
packet is successfully transmitted at time k and applied until
k + ∆, ∆ ≤ NB ≤ Np, then for all m ∈ {1, . . . ,∆}

J∗Np(x(k +m))− J∗Np(x(k))

≤ −α(Np,m)
m−1∑
j=0

F (x(k + j), u∗Np(k + j;x(k))) (8)

with α(Np,m) = 1− B(Np)2

m (Np+1−m) .

In classical unconstrained MPC without considering
packet dropouts and with fixed prediction horizon Np and
fixed control horizon m, asymptotic stability of the closed-
loop is guaranteed if α(Np,m) > 0. This can always
be achieved by choosing Np sufficiently large because
B(Np) ≤ B∞ is bounded. More precisely, α(Np,m) → 1
for Np → ∞, which corresponds to recovery of infinite
horizon optimality, see e.g. [10, 11].

Note that α(Np,m) ≥ α(Np, 1) for all m ∈ {1, . . . , Np}.
Thus, applying more than one control move, e.g. due to
packet dropouts, is actually beneficial with respect to the
bound for nominal performance compared to the bound for
classical MPC, for which only the first control move is
implemented and hence m = 1. Thus, we can use α(Np, 1)
as a kind of worst-case estimate in the following.

Under similar assumptions as in this work, it is possible
to derive other estimates for α(Np,m) than Lemma 1, e.g.
following as in [11, Theorem 5.4]. Both remarks given
above also hold for these formulas for α(Np,m). Since the
calculation of α is not our main focus, we will use the general
term α(Np,m) for the remainder of this work instead of
referring to particular formulas for α satisfying (8).

Furthermore, we assume α(Np, 1) ≥ 0 for the remainder
of the present work so that the controller achieves guaran-
teed asymptotic stability of the closed-loop without packet
dropouts.

B. Open-Loop Behavior

Since the number of possible consecutive packet dropouts
is unbounded, but the buffer length is finite, the plant is left
in open-loop for some time with non-zero probability. For
our subsequent analysis, we need some information about
the open-loop behavior of the system. Therefore, we use the
following assumption, which is a variant of [9, Assumption
5].

Assumption 3 (Open-loop Behavior)
There exists γ ∈ R+ with 1 < γ < 1

p such that

F (f(x, 0), 0) ≤ γ F (x, 0) (9)

for every x ∈ Rn.

IV. MAIN RESULTS

A. Optimal Cost At Successful Transmission Instants

In the first step, we state results about the optimal cost
function at transmission times ki and abbreviate x(0) by
x and F (x(0), u(0)) by F0. Without loss of generality, we
consider the first two successful transmission instants k0 = 0
and k1 in the following theorem.

Theorem 2
Suppose that Assumptions 1, 2 and 3 hold. Then

E
[
J∗Np(x(k1))|x

]
− J∗Np(x) ≤ −Ξ J∗Np(x) (10)

with Ξ defined by

Ξ =
1− pNB
B(Np)

ᾱ− pNB
(
−1 +

(1− p)γ(B(Np)− 1)
1− pγ

)
in which ᾱ =

1− p
1− pNB

NB∑
i=1

pi−1α(Np, i).

Proof: See Appendix A.
Note that ᾱ ≥ α(Np, 1) because of α(Np, 1) ≤ α(Np, i) for
all i ∈ {1, . . . , Np}.

By choosing the prediction horizon Np and the buffer size
NB large enough, Ξ > 0 can always be achieved because
B is bounded and p < 1. More precisely, Ξ → 1

B∞
for

Np, NB →∞. This is important because if Ξ > 0, stochastic
stability is guaranteed for all transmission instants ki ∈ K.
Since the sequence x(ki), ki ∈ K forms a Markov chain, we
obtain [15]

E
[
J∗Np(x(ki))|x(k0)

]
≤ (1− Ξ)i J∗Np(x(k0)) , ∀i ∈ N .

(11)

B. Stochastic Stability

Note that so far we have only considered the successful
transmission instants ki ∈ K. Despite the fact that ki+1−ki is
not bounded, stochastic stability of the closed-loop is proven
at all time instants k ∈ N in the following theorem.

Theorem 3 (Stochastic Stability)
Suppose that Assumptions 1, 2 and 3 hold and that Ξ defined
in Theorem 2 satisfies Ξ > 0. Then the system is stochasti-
cally stable

E

[ ∞∑
i=k0

|x(i)|2
∣∣∣x(k0)

]
<∞ ,

and consequently asymptotically mean-square stable

lim
i→∞

E
[
|x(i)|2

]
= 0 .

Proof: See Appendix B.



C. Performance Estimate

One significant advantage of unconstrained MPC schemes
without terminal weighting term is the direct attainment of
guaranteed performance bounds, see e.g. [10, 11]. In order
to evaluate performance in our stochastic setup, we compare
the expected value of the infinite horizon cost of the closed-

loop JMPC
∞ (x) = E

[ ∞∑
i=0

F (x(i), u(i))|x
]

, obtained when

applying the control law presented in this work including
buffering over the lossy network, to the infinite horizon
optimal cost J∗∞(x), obtained when no packet dropouts are
present. More precisely, we are looking for a suboptimality
index R+ 3 αP ≤ 1 such that

αP E

[ ∞∑
i=0

F (x(i), u(i))
∣∣∣x] ≤ J∗∞(x) . (12)

A suboptimality index αP close to 1 corresponds to almost
infinite horizon optimality.

Theorem 4 (Performance Estimate)
Suppose that Assumptions 1, 2 and 3 hold and that Ξ defined
in Theorem 2 satisfies Ξ > 0. Then the performance esti-
mate (12) is satisfied for

αP =
α(Np, 1)

1 + pNB Ψ
Ξ

(13)

in which Ξ is defined as in Theorem 2 and

Ψ =
γ(1− p)B(Np)

1− pγ
+

α(Np, 1)
(1− pγ)(1− p)

− 1 > 0 . (14)

Proof: See Appendix C.
Note that αP → α(Np, 1) for p → 0, i.e. we recover

the performance estimate of the classical deterministic un-
constrained MPC setup if there are no packet dropouts.
Furthermore, for NB , Np → ∞ we have αP → 1, i.e.
recovery of infinite horizon optimality, as expected. Hence,
Theorem 4 clearly shows the benefit from using a buffer size
NB > 1 with respect to performance.

We note that an alternative performance estimate α′P
can be directly obtained following the lines of the proof
of Theorem 3 in Appendix B and using (11). However,
this estimate does not recover the performance estimate of
the deterministic unconstrained MPC setup without packet
dropouts, i.e. αP 9 α(Np, 1) for p→ 0.

V. NUMERICAL EXAMPLE

In order to be able to calculate the infinite horizon optimal
cost analytically, we consider a randomly chosen unstable
linear system

x(k + 1) =
[

0.8235 0.3171
0.6948 0.9502

]
x(k) +

[
0
1

]
u(k)

with poles λ1(A) = 0.41321, λ2(A) = 1.3605, initial
condition x0 = [1, 1]T and dropout rate p = 0.2. We choose
the stage cost as F (x, u) = xTx + u2 and the prediction
horizon NP = 10. This allows to calculate the performance
estimate α(10, 1) = 0.52191 for the dropout-free case and

TABLE I
PERFORMANCE ESTIMATES AND COST FOR NUMERICAL EXAMPLE.

NB 4 5 6 7 8
αP 0.079088 0.41398 0.49934 0.51736 0.521
α′P 0.019725 0.085079 0.098218 0.10085 0.10137
JMPC
∞ 9.8793 9.8793 9.8793 9.8793 9.8793

the optimal infinite horizon cost J∗∞ = 9.8793. Stochastic
stability with packet dropouts is guaranteed by Theorem 3 for
buffer size NB ≥ 4. The performance estimates for different
buffer sizes are given in Table I. An improvement in the
guaranteed performance and recovery of the deterministic
estimate for large NB is clearly visible. However, the actual
performance of the system is already close to infinite hori-
zon optimality, which reveals the conservativeness of both
performance estimates, α(N,m) and αP .

VI. CONCLUSIONS

In this work, we consider the stability and performance
of a networked control system subject to packet dropouts.
In particular, we investigate the case when the number of
consecutive packet dropouts is not bounded. We propose
a packetized unconstrained MPC scheme which does not
require terminal cost functions or terminal constraints. In
contrast to related previous work, we do not require knowl-
edge of a global control Lyapunov function.

We derive conditions for stochastic stability of the closed-
loop and give a performance bound, which allows to compare
the expected cost of the closed-loop with packet dropouts to
the cost of the infinite horizon optimal controller when no
packet dropouts occur.

APPENDIX

A. Proof of Theorem 2

Due to the definition of the expected value and the
geometric distribution (2) of k1, it directly follows that

E
[
J∗Np(x(k1))|x

]
= (1− p)

NB∑
i=1

pi−1E
[
J∗Np(x(k))|k = i

]
+ (1− p)

∞∑
i=NB+1

pi−1E
[
J∗Np(x(k))|k = i

]
(15)

The first sum in (15) corresponds to all cases for which
k1 ≤ NB , i.e. the next successful transmission after time
instant k0 happens within the transmitted input sequence.
Thus, the buffer has never been empty. The second sum
in (15) corresponds to all cases for which k1 > NB , i.e.
no data has been received for at least NB consecutive time
instants. Hence, for some time the buffer state is zero and
the system is running open-loop with control input u = 0.

For the first sum in (15), we can use (8) in order to derive

(1− p)
NB∑
i=1

pi−1E
[
J∗Np(x(k1))|k1 = i

]
≤ (1− pNB )

(
J∗Np(x)− ᾱF0

)
. (16)



The term (1− pNB ) can nicely be interpreted as the proba-
bility to have less than NB consecutive packet dropouts.

For the second sum in (15), note that Assumption 2 yields
J∗Np(x(k1)) ≤ B(Np)F (x(k1), 0), and due to Assumption 3,
it is clear that F (x(k1), 0) ≤ γk1−NBF (x(NB), 0) for k1 >
NB . Moreover, we know that F (x(NB), 0) ≤ J∗Np(x)−F0.
Combining the three previous inequalities gives for k1 > NB

J∗Np(x(k1)) ≤ γk1−NBB(NP )
(
J∗Np(x)− F0

)
. (17)

Hence, we obtain for the second sum in (15)

(1− p)
∞∑

i=NB+1

pi−1E
[
J∗Np(x(k1))|k1 = i

]
(17)
≤ (1− p)B(Np)

p γNB

∞∑
i=NB+1

(pγ)i
(
J∗Np(x)− F0

)
=

(1− p)B(Np) (pγ)NB+1

p γNB (1− pγ)

(
J∗Np(x)− F0

)
. (18)

Plugging (16) and (18) into (15) gives

E
[
J∗Np(x(k1))|x

]
≤
(

1− pNB +
pNB (1− p) γ B(Np)

1− pγ

)
J∗Np(x)

−
(

(1− pNB )ᾱ+
pNB (1− p) γ B(Np)

1− pγ

)
F0 .

It directly follows that

E
[
J∗Np(x(k1))|x

]
− J∗Np(x)

≤
(
−pNB +

pNB (1− p) γ B(Np)
1− pγ

)
J∗Np(x)

−
(

(1− pNB )ᾱ+
pNB (1− p) γ B(Np)

1− pγ

)
F0 .

Note that the term within the parentheses before F0 is always
positive. Hence, by using again J∗Np(x) ≤ B(Np)F0, we
obtain

E
[
J∗Np(x(k1))|x

]
− J∗Np(x)

≤
(
−pNB +

pNB (1− p) γ B(Np)
1− pγ

)
J∗Np(x)

−
(

(1− pNB )ᾱ+
pNB (1− p) γ B(Np)

1− pγ

) J∗Np(x)

B(Np)

≤ pNB
(
−1 +

(1− p) γ (B(Np)− 1)
1− pγ

)
J∗Np(x)

− (1− pNB )ᾱ
J∗Np(x)

B(Np)
,

which proves the claim of Theorem 2.

B. Proof of Theorem 3

In the following, we abbreviate x(0) by x. By using the
definition of the expected value, the formula for the sum of

geometric series, p < 1, and pγ < 1, we obtain

E

[
k1−1∑
i=k0

|x(i)|2
∣∣∣x]

≤ (1− p)
∞∑
i=1

pi−1E

 NB∑
j=k0

|x(j)|2
∣∣∣k1 = NB


+ (1− p)

∞∑
i=NB+1

pi−1E

 k1−1∑
j=NB+1

|x(j)|2
∣∣∣k1 = i


(6),(9)
≤ (1− p)

∞∑
i=1

pi−1
J∗Np(x)

cF

+ (1− p)
∞∑

i=NB+1

pi−1
i−1∑

j=NB+1

γj−NB

cF
F (x(NB), 0)

≤ 1
cF

J∗Np(x)

+ (1− p)
J∗Np(x)

cF

γ

γ − 1
pNB

(
1

1− pγ
− 1

1− p

)
≤ β J∗Np(x)

for some finite constant 0 < β < ∞. Similarly, one can
show for all ki ∈ K

E

ki+1−1∑
j=ki

|x(j)|2
∣∣∣x(ki)

 ≤ β J∗Np(x(ki)) . (19)

Using the Markov chain property of x(ki) and (11) for the
optimal cost function at transmission instants establishes

E

ki+1−1∑
j=k0

|x(j)|2
∣∣∣x(k0)

 (19)
≤ β E

[
i∑
ι=0

J∗Np(x(kι))
∣∣∣x(k0)

]
(11)
≤ β

i∑
ι=0

(1− Ξ)ι J∗Np(x(k0))

= β
1− (1− Ξ)i+1

Ξ
J∗Np(x(k0)) .

Assumption 2 guarantees J∗Np(x(k0)) <∞, hence by taking
the limit i→∞

E

 ∞∑
j=k0

|x(j)|2
∣∣∣x(k0)

 ≤ β

Ξ
J∗Np(x(k0)) <∞ .

This completes the proof of Theorem 3.

C. Proof of Theorem 4

In the following, we abbreviate x(0) by x, F (x(j), u(j))
by Fj , and α(Np, 1) by α. Consider

E

J∗Np(x(k1)) + α

k1−1∑
j=0

Fj

∣∣∣x


= (1− p)
∞∑
i=1

pi−1E

J∗Np(x(k1)) + α

k1−1∑
j=0

Fj

∣∣∣k1 = i, x

 .



Similar to the proof of Theorem 2, we split the infinite sum
into parts. Due to Lemma 1, and α(Np, 1) ≤ α(Np, i) for
all i ∈ {1, . . . , Np}, we obtain for the first part

(1− p)
NB∑
i=1

pi−1E

J∗Np(x(k1)) + α

k1−1∑
j=0

Fj

∣∣∣k1 = i, x


≤ (1− p)

NB∑
i=1

pi−1J∗Np(x) = (1− pNB ) J∗Np(x) .

For the second part, we use Assumption 3 in order to obtain

(1− p)
∞∑

i=NB+1

pi−1E

J∗Np(x(k1)) + α

k1−1∑
j=0

Fj

∣∣∣k1 = i, x


≤ (1− p)

∞∑
i=NB+1

pi−1

(
γi−NBB(Np)FNB . . .

. . .+ α

NB−1∑
j=0

Fj + α

i−1∑
j=NB

γj−NBFNB

)

=
pNBγ(1− p)B(Np)

1− pγ
FNB

+ pNBα

NB−1∑
j=0

Fj +
∞∑

i=NB+1

pi−1α
γi−NB − 1
γ − 1

FNB

=
pNBγ(1− p)B(Np)

1− pγ
FNB

+ pNBα

NB−1∑
j=0

Fj + pNB
α

(1− pγ)(1− p)
FNB

≤ pNB (Ψ + 1) J∗Np(x)

for Ψ defined in (14). In particular, note that α
(1−pγ)(1−p) ≥

α. Hence, combining the two parts of the infinite sum
establishes

E

J∗Np(x(k1))− J∗Np(x) + α

k1−1∑
j=0

Fj

∣∣∣x
 ≤ pNB Ψ J∗Np(x)

Moreover, the same relation holds for all kι ∈ K when
replacing x by x(kι) and x(kι) by x(kι+1). Thus,

E

J∗Np(x(ki+1))− J∗Np(x) + α

ki+1−1∑
j=k0

Fj

∣∣∣x


=
i∑
ι=0

E

[
J∗Np(x(kι+1))− J∗Np(x(kι)) + α

kι+1−1∑
j=kι

Fj︸ ︷︷ ︸
=Λ(ι)

∣∣∣x]

MC=
i∑
ι=0

E
[
E
[
Λ(ι)

∣∣x(kι)
] ∣∣∣x]

≤ pNBΨ
i∑
ι=0

E
[
J∗Np(x(kι))

∣∣x]
(11)
≤ pNBΨ

1− (1− Ξ)i+1

Ξ
J∗Np(x) .

Note that we used the Markov chain property of x(ki) in
the step denoted by MC. Since J∗Np ≥ 0, taking the limit of

i→∞ yields αE

[
∞∑
j=0

Fj

∣∣∣x] ≤ J∗Np(x) + pNB Ψ 1
ΞJ
∗
Np

(x).

Finally, the proof directly follows from J∗Np(x) ≤ J∗∞(x).
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